Skip to main content

High Speed Book Flipping and Scanning

We are increasingly accustomed to using e-books and each book is now released in a digital version too. Progressive digitization of the world around us causes the demand for devices to enable the digitization of paper books, official documents, and notes. However, the conventional technology can not meet the demands for ease-of-use and high-speed book digitization. Ishikawa Oku Laboratory at the University of Tokyo works on a solution.

There is a growing demand for camera-based document analysis and recognition and there emerges a solution to the speed of book scanning named BFS-Auto. This device can achieve high-speed and high-definition of a book digitization at over 4 pages/sec. This performance is realized by three key points:

  1. high-speed fully-automated page flipping,
  2. real-time 3D recognition of the flipped pages,
  3. high-accuracy restoration to a flat document image.

The mechanism can not cause obstruction for the scanner while maintaining full speed. The developed system can flip and scan the book at over 250 pages/min without modifying the book by cutting. The real-time 3D recognition system continuously observes 3D deformation of each flipped page at 500 times per second, and recognizes the best moment for book image digitization at the highest quality using the newly constructed original algorithm in real-time. At this recognized moment, the high-definition camera captures the document so that both high-speed and high-definition performance is realized. Finally, the 3D restoration system restores a captured image which is distorted because of page curling to a flat original document image by using the captured image and the obtained 3D deformation.

The technical details are not available because as Yoshihiro Watanabe, the leader of the project, said,

the detailed research paper has not been published and this work is collaborative research with the company so that we need to keep some details in secret.

See the video below, that shows this forward-looking and somewhat revolutionary machine in action. Optical character recognition (OCR) software will be an excellent complement for the system to convert scanned images of handwritten, typewritten or printed texts into machine-encoded texts.

Comments

You might also like

    Popular posts

    What is Mechatronics?

    Mechatronics definition Mechatronics is a synergistic combination of precision engineering, electronic control and mechanic systems. It is the science, that exists at the interface among the other five disciplines: mechanics, electronics, informatics, automation, robotics. It is one of the most dynamically developing fields of technology and science. The word 'mechatronics' appeared for the first time in Japan in 1969. mechatronics = mecha nics + elec tronics + computing

    Ascento - The Two-Wheeled Jumping Robot

    All-terrain capabilities are required to extend beyond flat surfaces the application range of wheeled robots. First think is four or six-legged robots which have been well known for years. Nowadays, thanks to more and more perfect gait algorithms, the two-legged (bipedal) robots appears more and more often. ETH Zürich students combine the advantages of wheeled robot and two-legged robot.

    Automatic Sorting of Skittles or M&Ms by Colour

    Do you sort M&Ms or Skittles by colour before eating them?  For example, eat all the yellow ones first, then the red ones, then the blue and so on. Brian Egenriether, an electrical engineer, decided to make a small machine that looked like an appliance, which could perform these tasks automatically. This mechatronics project took him about 5 weekends to make. The use of the machine is very simple: pour Skittles or M&Ms into it, push a button and have candies sorted. Let us look at the construction.

    Mechatronics System as the Future of Cooking at Home

    Do you get up in the morning and don't feel like making breakfast? One of the solutions is food delivery service, which leaves your takeout order outside of your front door. Other solution is a private chef who is responsible for shopping for food, menu planning, preparing and cooking meals for you. But if you love mechatronics systems, your solution is a mechatronic kitchen. It allows you to save time, free up your day from routine cooking, plan and adapt your menu according to different diets and lifestyles.

    Three Wheels Balancing Robot

    The three wheels balancing robot is similar to a ballbot from the point of view of the goal. In comparison to ballbot which balance itself on a single ball, three wheels balancing robot is designed to balance itself on a single rod. The common characteristics of this kind of robots is that there’s one sole contact point to the ground.

    Stretch - Boston Dynamics Unveils New Robot for Warehouse Automation

    Boston Dynamics is the global leader in mobile robotics. Their popular robots are SpotMini, Spot, Atlas and Handle. Now they has revealed 'Stretch', which is a new box-moving robot designed to support the growing demand for flexible automation solutions in the logistics industry. A Massachusetts company well known for its humanoid robots and dog-like androids is preparing to muscle its way into the warehouse automation industry with its latest mechatronic solution. Warehouse automation is a fast-growing market fueled by increased demand in e-commerce. The robot called Stretch is Boston Dynamics’ first commercial robot specifically designed for warehouse facilities and distribution centers. Robert Playter, CEO of Boston Dynamics said: Warehouses are struggling to meet rapidly increasing demand as the world relies more on just-in-time delivery of goods. Mobile robots enable the flexible movement of materials and improve working conditions for employees. Stretch

    Ballbot - Ball Balance Robot

    A Ballbot (botball) is a mobile robot designed to balance itself on a single ball, both while in motion or staying in a place. We can say, that it is a "single wheel vehicle". The main characteristics of this kind of robots is that there’s one sole contact point to the ground. This means that the robot is inherently unstable. It’s like when you try to stand on a ball.