Skip to main content

Autonomous Cleaning and Disinfection Robot

It is a hard time for all of us, but the mechatronic systems can support us. Teams of engineers and scientists are working on different solutions, such as cleaning and disinfection robot for potentially contaminated surfaces in buildings such as door handles, light switches or elevator buttons.

Cleaning robots often spray the cleaning agents over a large area. The scientists from Fraunhofer Institutes presented DeKonBot, the prototype of a cleaning and disinfection autonomous  robot. Compared to cleaning by hand, the use of robots reduces the risk of infection for the cleaning staff and at the same time ensures that the cleaning task is carried out reliably and traceably.

DeKonBot is initially trained in its new operating environment. An image processing, machine learning methods as well as a newly developed multimodal 3D sensor are used. It allows even detecting the position of metallic and reflective objects.

First of all, the member of operating staff navigates the robot once through the environment, during which it independently creates a map of its operating environment. In addition, the user “shows” the robot the objects to be cleaned and the cleaning movement to be performed: For this purpose, the user guides the robot arm with the disinfection tool to the door handle, for example, and moves the tool as required to clean it. The robot saves the path and is subsequently able to repeat it independently. The objects to be cleaned are currently still recognized by means of so-called “tags”, i.e. small, black-and-white labels. The robot positions itself relative to these tags.

DeKonBot has not yet reached its full range of functions but researchers at Fraunhofer Institute for Manufacturing Engineering and Automation IPA have already developed a concept for a later serial product. Dr. Birgit Graf said:

Together with interested companies, we would like to put the service robot into practice and thus make a contribution to restarting public life even in times of the coronavirus

Comments

You might also like

    Popular posts

    What is Mechatronics?

    Mechatronics definition Mechatronics is a synergistic combination of precision engineering, electronic control and mechanic systems. It is the science, that exists at the interface among the other five disciplines: mechanics, electronics, informatics, automation, robotics. It is one of the most dynamically developing fields of technology and science. The word 'mechatronics' appeared for the first time in Japan in 1969. mechatronics = mecha nics + elec tronics + computing

    Ascento - The Two-Wheeled Jumping Robot

    All-terrain capabilities are required to extend beyond flat surfaces the application range of wheeled robots. First think is four or six-legged robots which have been well known for years. Nowadays, thanks to more and more perfect gait algorithms, the two-legged (bipedal) robots appears more and more often. ETH Zürich students combine the advantages of wheeled robot and two-legged robot.

    Automatic Sorting of Skittles or M&Ms by Colour

    Do you sort M&Ms or Skittles by colour before eating them?  For example, eat all the yellow ones first, then the red ones, then the blue and so on. Brian Egenriether, an electrical engineer, decided to make a small machine that looked like an appliance, which could perform these tasks automatically. This mechatronics project took him about 5 weekends to make. The use of the machine is very simple: pour Skittles or M&Ms into it, push a button and have candies sorted. Let us look at the construction.

    Mechatronics System as the Future of Cooking at Home

    Do you get up in the morning and don't feel like making breakfast? One of the solutions is food delivery service, which leaves your takeout order outside of your front door. Other solution is a private chef who is responsible for shopping for food, menu planning, preparing and cooking meals for you. But if you love mechatronics systems, your solution is a mechatronic kitchen. It allows you to save time, free up your day from routine cooking, plan and adapt your menu according to different diets and lifestyles.

    Three Wheels Balancing Robot

    The three wheels balancing robot is similar to a ballbot from the point of view of the goal. In comparison to ballbot which balance itself on a single ball, three wheels balancing robot is designed to balance itself on a single rod. The common characteristics of this kind of robots is that there’s one sole contact point to the ground.

    Ballbot - Ball Balance Robot

    A Ballbot (botball) is a mobile robot designed to balance itself on a single ball, both while in motion or staying in a place. We can say, that it is a "single wheel vehicle". The main characteristics of this kind of robots is that there’s one sole contact point to the ground. This means that the robot is inherently unstable. It’s like when you try to stand on a ball.

    Stretch - Boston Dynamics Unveils New Robot for Warehouse Automation

    Boston Dynamics is the global leader in mobile robotics. Their popular robots are SpotMini, Spot, Atlas and Handle. Now they has revealed 'Stretch', which is a new box-moving robot designed to support the growing demand for flexible automation solutions in the logistics industry. A Massachusetts company well known for its humanoid robots and dog-like androids is preparing to muscle its way into the warehouse automation industry with its latest mechatronic solution. Warehouse automation is a fast-growing market fueled by increased demand in e-commerce. The robot called Stretch is Boston Dynamics’ first commercial robot specifically designed for warehouse facilities and distribution centers. Robert Playter, CEO of Boston Dynamics said: Warehouses are struggling to meet rapidly increasing demand as the world relies more on just-in-time delivery of goods. Mobile robots enable the flexible movement of materials and improve working conditions for employees. Stretch

    High Speed Book Flipping and Scanning

    We are increasingly accustomed to using e-books and each book is now released in a digital version too. Progressive digitization of the world around us causes the demand for devices to enable the digitization of paper books, official documents, and notes. However, the conventional technology can not meet the demands for ease-of-use and high-speed book digitization. Ishikawa Oku Laboratory at the University of Tokyo works on a solution.