Skip to main content

Advances in Robotics, Automation and Control [e-book pdf]

The book presents an excellent overview of the recent developments in the different areas of Robotics, Automation and Control. Through its 24 chapters, this book presents topics related to control and robot design; it also introduces new mathematical tools and techniques devoted to improve the system modeling and control. An important point is the use of rational agents and heuristic techniques to cope with the computational complexity required for controlling complex systems. Through this book, we also find navigation and vision algorithms, automatic handwritten comprehension and speech recognition systems that will be included in the next generation of productive systems developed by man.

Edited by Jesús Arámburo-Lizárraga, University of Guadalajara, Mexico

Co-editor: Antonio Ramirez, CINVESTAV Universidad de Guadalajara
Chapter 1 Adaptive Control Optimization of Cutting Parameters for High Quality Machining Operations Based on Neural Networks and Search Algorithms
by J. V. Abellan, F. Romero, H. R. Siller, A. Estruch and C. Vila

Chapter 2 JPEG for Arabic Handwritten Character Recognition: Add a Dimension of Application
by Abdurazzag Ali Aburas and Salem Ali Rehiel

Chapter 3 Predicting Surface Roughness in Grinding Using Neural Networks
by Paulo R. Aguiar, Carlos E. D. Cruz, Wallace C. F. Paula and Eduardo C. Bianchi

Chapter 4 An Implementation of High Availability in Networked Robotic Systems
by Florin Daniel Anton, Theodor Borangiu and Silvia Anton

Chapter 5 Fault Diagnosis in Discrete Event Systems Using Interpreted Petri Nets
by Jesús Arámburo-Lizárraga, Antonio Ramírez-Treviño, Ernesto López-Mellado and Elvia Ruiz-Beltrán

Chapter 6 Cognitive Approach to Control in Ill-Structured Situation and the Problem of Risks
by Abramova N.A., Avdeeva Z.K. and Kovriga S. V.

Chapter 7 Attentional Selection for Action in Mobile Robots
by Pilar Bachiller, Pablo Bustos and Luis J. Manso

Chapter 8 Estimation of Tire-Road Forces and Vehicle Sideslip Angle
by Guillaume Baffet, Ali Charara and Daniel Lechner

Chapter 9 A New Load Adjustment Approach for Job-Shops
by Zied Bahroun, Mourad Fendouli and Jean-Pierre Campagne

Chapter 10 Discovering Strategic Behaviors in Multi-Agent Scenarios by Ontology-Driven Mining
by Davide Bacciu, Andrea Bellandi, Barbara Furletti, Valerio Grossi and Andrea Romei

Chapter 11 A New Algorithm for Initialization and Training of Beta Multi-Library Wavelets Neural Network
by Wajdi Bellil, Mohamed Othmani, Chokri Ben Amar and Mohamed Adel Alimi

Chapter 12 A Tree-Climbing Robot Platform: Mechanical Concept, Control Software and Electronic Architectures
by Reinaldo de Bernardi and José Jaime da Cruz

Chapter 13 Modeling Virtual Reality Web Application
by Berta Buttarazzi and Federico Filippi

Chapter 14 Outlier Detection Methods for Industrial Applications
by Silvia Cateni, Valentina Colla and Marco Vannucci

Chapter 15 Multi-Model Approaches for Bilinear Predictive Control
by Anderson Cavalcanti, André Maitelli and Adhemar Fontes

Chapter 16 The Holonic Production Unit: an Approach for an Architecture of Embedded Production Process
by Edgar Chacón, Isabel Besembel, Dulce M. Rivero and Juan Cardillo

Chapter 17 Artificial Intelligence Rationale for Autonomous Vehicle Agents Behaviour in Driving Simulation Environment
by Vassilis Charissis and Stylianos Papanastasiou

Chapter 18 Humanoid Robot Balancing
by Youngjin Choi and Doik Kim

Chapter 19 Multiresolutional Filter Application for Spatial Information Fusion in Robot Navigation
by Özer Ciftcioglu

Chapter 20 Interception and Rendezvous Between Autonomous Vehicles
by Yechiel J. Crispin

Chapter 21 Efficient Data Collection with an Automated Robotic Helicopter Using Bayesian Adaptive Sampling Algorithms for Control
by Steven M. Crunk and Marian Farah

Chapter 22 MO-Miner: A Data Mining Tool Based on Multi-Objective Genetic Algorithms
by Gina M. B. de Oliveira, Luiz G. A. Martins and Maria C., S. Takiguti

Chapter 23 Practical Computer Vision Techniques for Interactive Robotic Heads
by Oscar Deniz, Javier Lorenzo, Modesto Castrillon, Luis Anton, Mario Hernandez and Gloria Bueno

Chapter 24 Progress in Speech Recognition for Romanian Language
by Corneliu-Octavian Dumitru and Inge Gavat


You might also like

    Popular posts

    What is Mechatronics?

    Mechatronics definition Mechatronics is a synergistic combination of precision engineering, electronic control and mechanic systems. It is the science, that exists at the interface among the other five disciplines: mechanics, electronics, informatics, automation, robotics. It is one of the most dynamically developing fields of technology and science. The word 'mechatronics' appeared for the first time in Japan in 1969. mechatronics = mecha nics + elec tronics + computing

    Ascento - The Two-Wheeled Jumping Robot

    All-terrain capabilities are required to extend beyond flat surfaces the application range of wheeled robots. First think is four or six-legged robots which have been well known for years. Nowadays, thanks to more and more perfect gait algorithms, the two-legged (bipedal) robots appears more and more often. ETH Zürich students combine the advantages of wheeled robot and two-legged robot.

    Automatic Sorting of Skittles or M&Ms by Colour

    Do you sort M&Ms or Skittles by colour before eating them?  For example, eat all the yellow ones first, then the red ones, then the blue and so on. Brian Egenriether, an electrical engineer, decided to make a small machine that looked like an appliance, which could perform these tasks automatically. This mechatronics project took him about 5 weekends to make. The use of the machine is very simple: pour Skittles or M&Ms into it, push a button and have candies sorted. Let us look at the construction.

    Mechatronics System as the Future of Cooking at Home

    Do you get up in the morning and don't feel like making breakfast? One of the solutions is food delivery service, which leaves your takeout order outside of your front door. Other solution is a private chef who is responsible for shopping for food, menu planning, preparing and cooking meals for you. But if you love mechatronics systems, your solution is a mechatronic kitchen. It allows you to save time, free up your day from routine cooking, plan and adapt your menu according to different diets and lifestyles.

    Stretch - Boston Dynamics Unveils New Robot for Warehouse Automation

    Boston Dynamics is the global leader in mobile robotics. Their popular robots are SpotMini, Spot, Atlas and Handle. Now they has revealed 'Stretch', which is a new box-moving robot designed to support the growing demand for flexible automation solutions in the logistics industry. A Massachusetts company well known for its humanoid robots and dog-like androids is preparing to muscle its way into the warehouse automation industry with its latest mechatronic solution. Warehouse automation is a fast-growing market fueled by increased demand in e-commerce. The robot called Stretch is Boston Dynamics’ first commercial robot specifically designed for warehouse facilities and distribution centers. Robert Playter, CEO of Boston Dynamics said: Warehouses are struggling to meet rapidly increasing demand as the world relies more on just-in-time delivery of goods. Mobile robots enable the flexible movement of materials and improve working conditions for employees. Stretch

    Three Wheels Balancing Robot

    The three wheels balancing robot is similar to a ballbot from the point of view of the goal. In comparison to ballbot which balance itself on a single ball, three wheels balancing robot is designed to balance itself on a single rod. The common characteristics of this kind of robots is that there’s one sole contact point to the ground.

    DIY Low Cost 6-Axis Desktop Robot

    Learning how to build a robot is a long way. It is the way by mechanics, electronics and programming. Such a mechatronics project is associated with problems such as stiffness (mechanics), overvoltage (electronics) or bug (software). Of course, if something is wrong, we always say 'it's not a bug, it's a feature', but finally a robot has to start working properly.

    Theo Jansen Strandbeest

    Theodorus Gerardus Jozef "Theo" Jansen is a Dutch artist. Theo Jansen 's mechanism (named strandbeest - "beach animal") allows to perform walking motion. The advantage is that the required power of the engine used in the mechanism, must be sufficient to transfer only the legs (not transported elements). He invented that in 1991.